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MULTITIME OPTIMAL CONTROL
WITH SECOND-ORDER PDES CONSTRAINTS

CONSTANTIN UDRIŞTE ∗

ABSTRACT. In this paper we study a simplified version of multitime optimal control
problem for linear second-order partial differential equations (PDE). The multitime multiple
integral functional is of Lagrange type. Necessary optimality conditions of multitime
maximum principle type are derived. The multitime optimal control with second-order
PDE constraints can be analyzed in three ways: as problems governed by (i) explicit m-
flows, (ii) implicit m-flows, and (iii) second-order PDEs. All directions lead to variants
of multitime maximum principle. The theoretical results are confirmed by solving two
significant problems.

1. Introduction

Partial differential equations (PDE) constrained optimization is a very active area, as
indicated by the large number of talks/symposia and papers. In this paper, our aim is to
prove a simplified multitime maximum principle for optimal control problems governed
by linear second-order PDEs. The control is distributed and takes values in an interval.
Although the problem is known (Bardi and Capuzzo-Dolcetta 1997; Becker, Kapp, and
Rannacher 2000; Hinze et al. 2009; Lions 1971; Tröltzsch 2010; Yong 1992, 1993), our
technique is a simpler solution than that of published works (see also Udrişte 2008; Udrişte
2009[a],[b], 2010, 2011; Udrişte and Bejenaru 2011; Udrişte and Ţevy 2009, 2010).

In a PDE constrained optimization problem there are four basic elements: (i) A control
u that we can handle according to our interests, which can be chosen among a family of
feasible controls U . (ii) The state of the system x to be controlled, which depends on the
control. Some limitations can be imposed on the state, in mathematical terms x ∈C, which
means that not every possible state of the system is satisfactory. (iii) A state PDE that
establishes the dependence between the control and the state. (iv) A functional J(u(·)) to be
extremized, called the objective functional or the cost functional, depending on the control
and the state.

In the next sections the state equation will be a linear second-order PDE (partial differ-
ential equation), x(t) being the solution of the equation and u(t) a control arising in the
equation so that any change in the control u(t) produces a change in the solution x(t). The
objective is to determine an admissible control, called optimal control, that provides a satis-
factory state for us and that extremizes the value of functional J(u(·)). The basic questions
to study are the necessary conditions, the existence of solution and its computation.
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A2-2 C. UDRIŞTE

2. Setting of optimal control problem

Let Ωt0t1 ∈ Rm
+ be a hyper-parallelepiped determined by the diagonal opposite points

t0, t1 ∈ Rm
+. In Ωt0t1 we will consider the controlled linear second-order PDE

1
2

hαβ (t)
∂ 2x

∂ tα ∂ tβ
(t)+hα(t)

∂x
∂ tα

(t)+ x(t) = u(t). (1)

If (hαβ ) ∈C2(Ωt0t1),(h
α) ∈ L2(Ωt0t1) and u ∈ L2(Ωt0t1), then the Dirichlet problem fixed

by x = 0 on ∂Ωt0t1 , and some other additional conditions depending on the type of equation
(elliptic, parabolic, hyperbolic), has a unique solution x ∈ H1

0 (Ωt0t1)∩L∞(Ωt0t1).
It is supposed that the Lagrangian L : Ωt0t1 ×A×U → R is a C2 function, A ⊂ Rn is a

bounded and closed subset, which contains the m-sheet x(t), t ∈ Ωt0t1 of controlled PDE,
the function u : Ωt0t1 → [a,b] is the control and dt1 · · ·dtm is the volume element.

Problem: find

max
u(·)


Ωt0t1

L(t,x(t),u(t))dt1...dtm (2)

constrained by the PDE (1).

3. Multitime maximum principle via first order constraints

For solving the foregoing problem, using simplifying reasonings, we prefer to transform
the second-order PDE into a first order PDE system as in our papers (Udrişte 2008; Udrişte
2009[a],[b], 2010, 2011; Udrişte and Bejenaru 2011; Udrişte and Ţevy 2009, 2010):

∂x
∂ tα

(t) = vα(t),
∂vα

∂ tβ
(t) =

∂vβ

∂ tα
(t)

1
2

hαβ (t)
∂vα

∂ tβ
(t)+hα(t)vα(t)+ x(t) = u(t). (3)

We use the generalized Lagrangian

L = L+ pα(t)


vα(t)−
∂x
∂ tα

(t)

+ pαβ


∂vα

∂ tβ
(t)−

∂vβ

∂ tα
(t)


+q(t)


1
2

hαβ (t)
∂vα

∂ tβ
(t)+hα(t)vα(t)+ x(t)−u(t)


or simplified

L = L+(pα +qhα)vα − pα ∂x
∂ tα

+(pαβ − pβα +
1
2

qhαβ )
∂vα

∂ tβ
+q(x−u).

The attached Hamiltonian is

H = L+(pα +qhα)vα +q(x−u).

The Lagrange multipliers pα , pαβ ,q corresponding to pointwise control constraints are C1

functions.
Theorem (multitime maximum principle) Suppose that the problem of maximizing the

functional (2) constrained by (1) has an interior optimal solution u∗(t), which determines
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the optimal evolution x(t). Then there exists the costate functions pα(t), pαβ (t),q(t) such
that

(initial system)
∂x
∂ tα

=
∂H
∂ pα

,
∂H

∂ pαβ
= 0,

∂H
∂q

= 0

(ad joint or dual system)
∂H
∂x

+
∂ pα

∂ tα
= 0,

∂H
∂vα

− ∂ pαβ

∂ tβ
= 0,

(critical point condition)
∂H
∂u

= 0

hold.
Proof. Firstly, we find the infinitesimal deformation PDE system (3). We fix the control

u(t) and we variate the state x(t) into x(t,ε). Denote ∂x
∂ε
(t,0) = y, ∂vα

∂ε
(t,0) = wα . The

infinitesimal deformation PDE system is

∂y
∂ tα

= wα ,
∂wα

∂ tβ
=

∂wβ

∂ tα

1
2

hαβ (t)
∂wα

∂ tβ
(t)+hα(t)wα(t)+ y(t) = 0.

Then, the adjoint PDE system is

y
∂ pα

∂ tα
= pα wα , wα

∂ pαβ

∂ tβ
= pαβ ∂wα

∂ tβ
,

1
2

hαβ wα

∂q
∂ tβ

=−q(hα wα + y).

The sense of adjointness is

pα Lα y− yMα pα = 0, wα Pβ pαβ − pαβ Qβ wα = 0, qhαβ Rβ wα −hαβ wα Sβ q = 0,

where Lα and Mα , Pα and Qα , Rα and Sα are linear second-order partial differential
operators.

Secondly, let u(t) be an optimal control. A variation û = u+εh of the control determines
the variation of the state x = x(t;ε). The first variation of the Lagrangian L is

∂L

∂ε
|ε=0 =

∂L
∂x

xε(t,0)+
∂L
∂u

h+(pα +qhα)
∂vα

∂ε
(t,0)

−pα ∂xε

∂ tα
(t,0)+(pαβ − pβα +

1
2

qhαβ )
∂vαε

∂ tβ
(t,0)+qxε(t,0)−qh.

For integration by parts (divergence formula), we use the identities

−pα(t)
∂xε

∂ tα
(t,0) =

∂ pα

∂ tα
(t)xε(t,0)−

∂

∂ tα
(pα(t)xε(t,0))

pαβ (t)
∂vαε

∂ tβ
(t,0) =

∂

∂ tβ
(pαβ (t)vαε(t,0))−

∂ pαβ

∂ tβ
(t)vαε(t,0).

The condition I′(0) = 0 means vanishing of the integral
Ω


∂L
∂x

+
∂ pα

∂ tα
+q


xε(t,0)+


pα +qhα − ∂ pαβ

∂ tβ


vαε(t,0)+


∂L
∂u

−q


h

−


∂Ω

pα(t)nα(t)xε(t,0)+


∂Ω

(pαβ (t)− pβα(t))vαε(t)nβ (t),
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A2-4 C. UDRIŞTE

taking into account the adjoint PDEs, the boundary conditions, and arbitrariness of h.
Using the adjoint PDE system, it follows

∂H
∂x

+
∂ pα

∂ tα
= 0,

∂H
∂vα

− ∂ pαβ

∂ tβ
= 0, pα |∂Ωt0t1

= 0, pαβ |∂Ωt0t1
= 0

and hence
∂H
∂u

= 0.

Remark: If u∗(t) is not an interior optimal control, then the critical point condition is
replaced by

H(x∗(t), p∗(t),u∗(t)) = max
u∈U

H(x∗(t), p∗(t),u), t ∈ Ωt0t1 .

From the critical point condition, we understand that L cannot be independent of “u”; if
L is independent of “u”, then the foregoing theory must be changed - in fact the Hamiltonian
is linear in control and we obtain a bang-bang solution.

4. Multitime maximum principle via second-order constraints

The key tool to get the necessary conditions for optimality works directly. Indeed, let us
start with the generalized Lagrangian

L = L+ p(t)

−1

2
hαβ (t)

∂ 2x
∂ tα ∂ tβ

(t)−hα(t)
∂x
∂ tα

(t)− x(t)+u(t)


and its associated Hamiltonian

H = L+ p

−hα ∂x

∂ tα
− x+u


.

The Lagrange multipliers p corresponding to pointwise control constraints is a C1 function.
Theorem (multitime maximum principle) Suppose that the problem of maximizing the

functional (2) constrained by (1) has an interior optimal solution u∗(t), which determines
the optimal evolution x(t). Then there exists the costate functions p(t) such that

(initial PDE)
1
2

hαβ (t)
∂ 2x

∂ tα ∂ tβ
(t) =

∂H

∂ p

(ad joint or dual equation)
1
2

∂ 2(phαβ )

∂ tα ∂ tβ
− ∂ (phα)

∂ tα
=

∂H

∂x
,

(critical point condition)
∂H

∂u
= 0

hold.
Proof. Firstly, we find the infinitesimal deformation of PDE (1). We fix the control

u(t) and we variate the state x(t) into x(t,ε). Denote ∂x
∂ε
(t,0) = y(t). The infinitesimal

deformation PDE is

1
2

hαβ (t)
∂ 2y

∂ tα ∂ tβ
(t)+hα(t)

∂y
∂ tα

(t)+ y(t) = 0.
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The adjoint PDE is

1
2

∂ 2(hαβ p)
∂ tα ∂ tβ

(t)− ∂ (hα p)
∂ tα

(t)+ p(t) = 0.

The adjointness has the sense pLy−yMp = 0, where L and M are linear second-order partial
differential operators.

The variation û = u+ εh of the control determines the variation of the state x = x(t;ε).
The first variation of the Lagrangian L is

∂L

∂ε
|ε=0 =

∂L
∂x

xε(t,0)+
∂L
∂u

h

p(t)

−1

2
hαβ (t)

∂ 2xε

∂ tα ∂ tβ
(t,0)−hα(t)

∂xε

∂ tα
(t,0)− xε(t,0)+h(t)


.

For integration by parts (divergence formula), we use the identities

p(t)hα(t)
∂xε

∂ tα
(t,0) =

∂

∂ tα
(p(t)hα(t)xε(t,0))−

∂ (phα)

∂ tα
(t)xε(t,0)

p(t)hαβ (t)
∂ 2xε

∂ tα ∂ tβ
(t,0) =

∂

∂ tα


p(t)hαβ (t)

∂xε

∂ tβ
(t,0)


− ∂ (phαβ )

∂ tα
(t)

∂xε

∂ tβ
(t,0)

∂ (phαβ )

∂ tα
(t)

∂xε

∂ tβ
(t,0) =

∂

∂ tβ


∂ (phαβ )

∂ tα
(t)xε(t,0)


− ∂ 2(phαβ )

∂ tα ∂ tβ
(t)xε(t,0).

The condition I′(0) = 0 means vanishing of the integral
Ω


∂L
∂x

− 1
2

∂ 2(phαβ )

∂ tα ∂ tβ
+

∂ (phα)

∂ tα
− p


xε(t,0)+


∂L
∂u

+ p


h

−1
2


∂Ω

phαβ nα

∂xε

∂ tβ
+

1
2


∂Ω

∂ (phαβ )

∂ tα
nβ xε +


∂Ω

phα nα xε ,

taking into account the adjoint PDE, the boundary conditions, and arbitrariness of h.
Using the adjoint PDE equation, it follows

∂L
∂x

− 1
2

∂ 2(phαβ )

∂ tα ∂ tβ
+

∂ (phα)

∂ tα
− p = 0, p|∂Ωt0t1

= 0

and hence
∂L
∂u

+ p = 0.

Remarks: (i) If u∗(t) is not an interior optimal control, then the critical point condition
is replaced by

H (x∗(t), p∗(t),u∗(t)) = max
u∈U

H (x∗(t), p∗(t),u), t ∈ Ωt0t1 .
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5. Examples

5.1. Let us formulate and solve a bi-temporal optimal problem with pointwise state
constraints:

min
u(·)

1
2


Ωt0t1

(x(t)− sin(2πt1t2))2 dt1dt2 +
α

2


Ωt0t1

u2(t)dt1dt2

subject to
−∆x(t) = u(t), t ∈ Ωt0t1 ;x(t) = 0for t ∈ ∂Ωt0t1 .

To solve this problem we apply the two-time maximum principle via second-order
constraints. For that, we introduce the Lagrangian

L =−1
2
(x(t)− sin(2πt1t2))2 − α

2
u2(t)+ p(t)(∆x(t)+u(t)).

Since 1
2 hαβ =−δ αβ , hα = 0, ∂L

∂x =−(x(t)− sin(2πt1t2)), the adjoint PDE is

x(t)− sin(2πt1t2)+∆p(t) = 0, p|∂Ωt0t1
= 0.

On the other hand, the critical point condition gives p(t) = αu(t). Suppose α > 0.

5.1.1. Case of homogeneous PDE system. The associated homogeneous system implies

∆
2x(t) =

1
α

x(t), ∆
2u(t) =

1
α

u(t).

These PDEs show that we have to solve the eigenvalues problem

∆
2u(t) =

1
α

u(t), u(t)|∂Ωt0t1
= 0.

Looking for the solution of the form

u(t) = u(t1, t2) = sinλ1(t1 − t1
0 ) sinλ2(t2 − t2

0 ),

we find the characteristic equation

λ
2
1 +λ

2
2 =± 1√

α
.

For
λ1 =

i
4
√

α
cosϕ, λ2 =

i
4
√

α
sinϕ

we get a first solution

u1(t) = sinλ1(t1 − t1
0 ) sinλ2(t2 − t2

0 ),

of the PDE. For

λ3 =
1

4
√

α
cosϕ, λ4 =

1
4
√

α
sinϕ

we find the second solution

u2(t) = sinλ3(t1 − t1
0 ) sinλ4(t2 − t2

0 )

of the PDE. The general solution of the PDE is

u(t) = c1u1(t)+ c2u2(t).
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The boundary conditions imply

c1 = 0,λ1 =
nπ

t1
1 − t1

0
,λ2 =

mπ

t2
1 − t2

0
,

α =


nπ

t1
1 − t1

0

2

+


mπ

t2
1 − t2

0

2
−2

.

We fix the values n and m. A solution of the homogeneous PDE system ∆x = −u,
α∆u =−x, with vanishing boundary conditions, is

x(t1, t2) = Asin
nπ(t1 − t1

0 )

t1
1 − t1

0
sin

mπ(t2 − t2
0 )

t2
1 − t2

0

and

u(t1, t2) =


nπ

t1
1 − t1

0

2

+


mπ

t2
1 − t2

0

2


x(t1, t2).

5.1.2. Case of non-homogeneous PDE system. The functions

ϕ
nm(t1, t2) = 2(t1

1 − t1
0 )

− 1
2 (t2

1 − t2
0 )

− 1
2 sin

nπ(t1 − t1
0 )

t1
1 − t1

0
sin

mπ(t2 − t2
0 )

t2
1 − t2

0

are orthonormal eigenfunctions of the Laplacian operator corresponding to the eigenvalues

λnm =


nπ

t1
1 − t1

0

2

+


mπ

t2
1 − t2

0

2

.

These eigenfunctions determine a complete system on L2(Ωt0t1).
We look for the solutions of the PDE system

∆x =−u, α∆u =−x+ sin(2πt1t2)

in the form (Einstein convention of summation)

x(t1, t2) = αnmϕ
nm(t1, t2), u(t1, t2) = βnmϕ

nm(t1, t2).

Replacing in the PDEs, we obtain the systems

λnmαnm +βnm = 0, αnm +αλnmβnm = γnm,

where
sin(2πt1t2) = γnmϕ

nm(t1, t2),

with

γnm = 4(t1
1 − t1

0 )
−1(t2

1 − t2
0 )

−1
 t1

1

t1
0

 t2
1

t2
0

sin(2πt1t2) ϕ
nm(t1, t2)dt1dt2.

The coefficients

αnm =
−γnm

αλ 2
nm −1

, βnm =
γnmλnm

αλ 2
nm −1

determine the optimal control u(t1, t2) and the optimal evolution x(t1, t2).
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5.1.3. Laplace approach for non-homogeneous PDE system. Let us find a solution of the
non-homogeneous PDE system

∆x(t) =−u(t), α∆u(t) =−x(t)+ sin(2πt1t2),

with vanishing boundary conditions. We apply a bi-dimensional Laplace transform

X(p1, p2) =


∞

0


∞

0
x(t1, t2)e−(p1t1+p2t2)dt1dt2

U(p1, p2) =


∞

0


∞

0
u(t1, t2)e−(p1t1+p2t2)dt1dt2.

The non-homogeneous PDE system is transformed into

(p2
1 + p2

2)X(p1, p2)+U(p1, p2) = 0,

α(p2
1 + p2

2)U(p1, p2)+X(p1, p2) =− 1
2π

(CiΠcosΠ+SiΠsinΠ) ,

where Π = p1 p2
2π

. It follows

X(p1, p2) =
1

2π

CiΠcosΠ+SiΠsinΠ

α(p2
1 + p2

2)
2 −1

U(p1, p2) =−(p2
1 + p2

2)X(p1, p2).

The optimal control and the optimal evolution are obtained by

u(t1, t2) =− 1
4π2

 a+i∞

a−i∞

 b+i∞

b−i∞
U(t1, t2)ep1t1+p2t2

d p1d p2

x(t1, t2) =− 1
4π2

 a+i∞

a−i∞

 b+i∞

b−i∞
X(t1, t2)ep1t1+p2t2

d p1d p2.

5.2. The single-time case is well-known as optimal monetary policy. In this case, the PDE
is replaced by the ODE

a2

2
ẍ(t)+aẋ(t)+ x(t) = u(t), t ∈ [0,T ] (4)

x(0) = x0,x(T ) = xT , ẋ(T ) = 0,
where x is the proportional rate of growth of money income, the control u = m+bṁ, where
m = Ṁ

M is a proportional rate of change of money supply M(t), b = const and a is a constant
representing the length of the business cycle.

Some institutional and economic reasons ask |u(t)| ≤ 0.1. The terminal value T means
some future date. The conditions x(T ) = xT , ẋ(T ) = 0 show that we can achieve a stable
rate of growth of national income, using an optimal money supply police. This objective is
equivalent to:

min I(u(·)) =
 T

0
dt subject to (4).

To solve this problem we apply the maximum principle via second-order constraints. Having
a linear optimal control with

L =−1+ p(t)


a2

2
ẍ(t)+aẋ(t)+ x(t)−u(t)


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=−1+ p(t)


a2

2
ẍ(t)+aẋ(t)+ x(t)


− p(t)u(t),

the switching function is σ =−p, and the optimal control

u∗(t) =


0.1 if p(t)> 0
−0.1 if p(t)< 0

is a bang-bang control. We add the adjoint boundary problem

a2

2
p̈(t)−aṗ(t)+ p(t) = 0, p(0) = p0, p(T ) = 0.

The general solution
p(t) = eat(B1 cosat +B2 sinat)

and the boundary conditions give the optimal Lagrange multiplier

p(t) = eat(cosat − cosaT
sinaT

sinat)p0.

For u∗(t) = 0.1, we obtain the general optimal evolution

x(t) = e−at(C1 cosat +C2 sinat)+0.05.

Imposing the boundary conditions, we must have

(xT −0.05)eaT =C1 cosaT +C2 sinaT ,

(C2 −C1)cosaT − (C2 +C1)sinaT = 0 ,
or

(xT −0.05)eaT =C1 cosaT +C2 sinaT, (xT −0.05)eaT =C2 cosaT −C1 sinaT .

It follows

C1 = (xT −0.05)eaT (cosaT − sinaT ), C2 = (xT −0.05)eaT (sinaT + cosaT ) .

Remark: If we want to find a solution by discretization, then we must have in mind that
“discretized-then-optimize and optimize-then-discretized” are two different approaches. One
is not universally better than the other.
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Udrişte, C. (2011). “Multitime maximum principle for curvilinear integral cost”. Balkan Journal of
Geometry and Its Applications 16(1), 128–149.
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