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MULTITIME OPTIMAL CONTROL
WITH SECOND-ORDER PDES CONSTRAINTS

CONSTANTIN UDRISTE *

ABSTRACT. In this paper we study a simplified version of multitime optimal control
problem for linear second-order partial differential equations (PDE). The multitime multiple
integral functional is of Lagrange type. Necessary optimality conditions of multitime
maximum principle type are derived. The multitime optimal control with second-order
PDE constraints can be analyzed in three ways: as problems governed by (i) explicit m-
flows, (ii) implicit m-flows, and (iii) second-order PDEs. All directions lead to variants
of multitime maximum principle. The theoretical results are confirmed by solving two
significant problems.

1. Introduction

Partial differential equations (PDE) constrained optimization is a very active area, as
indicated by the large number of talks/symposia and papers. In this paper, our aim is to
prove a simplified multitime maximum principle for optimal control problems governed
by linear second-order PDEs. The control is distributed and takes values in an interval.
Although the problem is known (Bardi and Capuzzo-Dolcetta 1997; Becker, Kapp, and
Rannacher 2000; Hinze et al. 2009; Lions 1971; Troltzsch 2010; Yong 1992, 1993), our
technique is a simpler solution than that of published works (see also Udriste 2008; Udriste
2009[a],[b], 2010, 2011; Udriste and Bejenaru 2011; Udriste and Tevy 2009, 2010).

In a PDE constrained optimization problem there are four basic elements: (i) A control
u that we can handle according to our interests, which can be chosen among a family of
feasible controls %/ . (ii) The state of the system x to be controlled, which depends on the
control. Some limitations can be imposed on the state, in mathematical terms x € C, which
means that not every possible state of the system is satisfactory. (iii) A state PDE that
establishes the dependence between the control and the state. (iv) A functional J(u(-)) to be
extremized, called the objective functional or the cost functional, depending on the control
and the state.

In the next sections the state equation will be a linear second-order PDE (partial differ-
ential equation), x(¢) being the solution of the equation and u(¢) a control arising in the
equation so that any change in the control u(¢) produces a change in the solution x(¢). The
objective is to determine an admissible control, called optimal control, that provides a satis-
factory state for us and that extremizes the value of functional J(u(-)). The basic questions
to study are the necessary conditions, the existence of solution and its computation.
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2. Setting of optimal control problem

Let €, € R be a hyper-parallelepiped determined by the diagonal opposite points
to,t) € R'}. In Q;;, we will consider the controlled linear second-order PDE

2.x X
THB )5 0 (1) 1) S () 4 x(0) = (). 0

If (h*F) € C?(Quy, )»(h*) € L*(Qyy, ) and u € L2(€yy, ), then the Dirichlet problem fixed
by x = 0 on dQ;, , and some other additional conditions depending on the type of equation
(elliptic, parabolic, hyperbolic), has a unique solution x € Hé (Qupr,) ML= (41, )-

It is supposed that the Lagrangian L : Q;;, xAxU — Ris a C? function, A C R"is a
bounded and closed subset, which contains the m-sheet x(), € Q;, of controlled PDE,

the function u : &, — [a,b] is the control and dt'---dt™ is the volume element.
Problem: find

max /Q L(t,x(t),u(t)) di"..di" 2)

u(-) 101
constrained by the PDE (1).

3. Multitime maximum principle via first order constraints

For solving the foregoing problem, using simplifying reasonings, we prefer to transform
the second-order PDE into a first order PDE system as in our papers (Udriste 2008; Udriste
2009[al],[b], 2010, 2011; Udriste and Bejenaru 2011; Udriste and Tevy 2009, 2010):

ox dvg dvg
0 =val0), TE0) =520
2HB0) 2 (1) 1)) +5(0) = ). )

We use the generalized Lagrangian

X Vo dv
2 =140 () - 50)) 0 (G50 - 520))
+ale) (34980 50 )+ 42 Ovate) +30) ()

or simplified

dox 1 d
L =L+ (p*+qh*)va—p ataJr(p B—pﬁ“+§qh°‘ﬁ)ﬁ

5P +q(x—u).

The attached Hamiltonian is
H =L+ (p*+qh%)ve +q(x—u).

The Lagrange multipliers p%, p*® . ¢ corresponding to pointwise control constraints are C'
functions.

Theorem (multitime maximum principle) Suppose that the problem of maximizing the
Sfunctional (2) constrained by (1) has an interior optimal solution u*(t), which determines
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the optimal evolution x(t). Then there exists the costate functions p®(t), p®P(t),q(t) such
that
dx aH JH JH

(initial system) Eri 9pe’ 8p0‘ﬁ 9 =0

dH Jdp“* 0H oJp®

(ad joint or dual system) o5 + 5 =% e ob =0,
JH
(critical point condition) o = 0
u
hold.

Proof. Firstly, we find the infinitesimal deformation PDE system (3). We fix the control
u(t) and we variate the state x(z) into x(¢,€). Denote %(t,O) v, a“" 2(1,0) = wq. The
infinitesimal deformation PDE system is

dy owg  dwp
=7 = Wa, =

Jr* oth dr“
aWa

1
—h® £)+h%(¢ t t)=0.
SHP () S0 + B (Owal0) + (1) = 0
Then, the adjoint PDE system is
dp® o op®h apOWa 1 aB,, dqg
Yora — P W Wy =r" oth 2 *oB
The sense of adjointness is

—q(h%wq +y).

P Loy —yMap® = 0, woPgp®* — p® Qgwe = 0, gh™F Rgwo — h*PweSpq =0,

where Ly and My, Py and Qy, Ry and Sy are linear second-order partial differential
operators.

Secondly, let u(¢) be an optimal control. A variation 4 = u + &h of the control determines
the variation of the state x = x(; €). The first variation of the Lagrangian .% is

0% _dL JdL o o OV
¥|e:0 = axe(%o) + oTth (" +qh )g(ho)

(9 ap Ba ap avag

P 1,00+ (pF PP gh) T (1,0) + g (1,0) g
For integration by parts (divergence formula), we use the identities
ox dap* 0
P S (1,0) = T (0xe(1,0) — 5 (P (1)xe(1,0))
v 0 d
PP 0 2% (1.0) = 2 (0P 0)vee0.0)) — 2 () vie0.0).
The condition I'(0) =

= 0 means vanishing of the integral
X,

JdL ap o u apaﬁ Il
J, (G e )0+ GwhamwwM+th

= o P (Onalt)xe(r,0)+ ag(p“ﬁ (1) = PP(1))vace (1)mp (1),
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taking into account the adjoint PDEs, the boundary conditions, and arbitrariness of /.
Using the adjoint PDE system, it follows
JH Jp* =~ OJH 0 poB

—_ _— = o = a‘B =
ax + 8IOC ’ aVa atﬁ 07 P |8910r1 07 P |BQ[011 O

and hence
OH
5
Remark: If u*(¢) is not an interior optimal control, then the critical point condition is
replaced by

0.

H(x (1), p*(¢),u" (1)) = max H(x"(¢), p* (), u), 1 € Qg

From the critical point condition, we understand that L cannot be independent of “u”; if
L is independent of “u”, then the foregoing theory must be changed - in fact the Hamiltonian
is linear in control and we obtain a bang-bang solution.

4. Multitime maximum principle via second-order constraints

The key tool to get the necessary conditions for optimality works directly. Indeed, let us
start with the generalized Lagrangian

2

and its associated Hamiltonian

2.X X
2= 140) (=310 355 (0 =K 512 0) =30) ()

dx
H =L —h*=— —x+u).
The Lagrange multipliers p corresponding to pointwise control constraints is a C' function.
Theorem (multitime maximum principle) Suppose that the problem of maximizing the
Sfunctional (2) constrained by (1) has an interior optimal solution u*(t), which determines
the optimal evolution x(t). Then there exists the costate functions p(t) such that

1 9%x 0

(initial PDE) P05 s (1) = 9

19%(ph*P) a(ph®) _ d

2 Jt%9th ar*  Ix’

(ad joint or dual equation)

s
(critical point condition) P 0
u
hold.
Proof. Firstly, we find the infinitesimal deformation of PDE (1). We fix the control
u(r) and we variate the state x(¢) into x(¢,€). Denote %(I,O) = y(¢). The infinitesimal
deformation PDE is

Loap 9% a9V _
LP(0) 20 0) 1) 2 0)-43(0) =
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The adjoint PDE is

10*h*Fp) . I(h®p)
2 01%9:P 0= o1 (t)+p(t) =0.

The adjointness has the sense pLy —yM p = 0, where L and M are linear second-order partial
differential operators.
The variation i = u+ €h of the control determines the variation of the state x = x(; €).
The first variation of the Lagrangian .Z is
0¥ JdL JdL

Tg|g=0 = a—xxg(t,()) =+ Eh

2xg Xe
p(t) <—1h°‘ﬁ (1) J (¢,0) —ho‘(t)gw(t,O) —xe(t,0) —|—h(t)> )

For integration by parts (divergence formula), we use the identities

PR T2 (1.0) = 2 (PR (1)2e(0,0)) ~ “L2D (1)1, 1,0)

2xe Xe ap Xe
PO ) 5155 (0 = 50z (PORP 0 55 0.0) ) = 25 0 20,0

(1)xe(1,0).

d(ph®P)  dxe 9 [ a(ph*P) 9% (ph*P)
ore (t)atﬁ(t’o)_c)tﬁ< ore ()xg(t’0)>_ 012 9th

The condition I'(0) = 0 means vanishing of the integral
L 19%(ph®B)  9(ph*) L
A (a T2 g T g P)ReOF (au +P> h

1 dxe 1 d(ph*B)
_- pobBy, 7€ T
215”9 T2 fon " ar

taking into account the adjoint PDE, the boundary conditions, and arbitrariness of &.
Using the adjoint PDE equation, it follows

AL 192(pheB)  3(ph)
afi Bto‘Btﬁ BT 7p:03 p|agtot| =0

ngxe + /ag ph®ngxe,

and hence
—+p=0.
u

Remarks: (i) If «*(7) is not an interior optimal control, then the critical point condition
is replaced by

S (1), p (1), (1)) = max A (6 (0),p (1), ), £ € Q-

uclU
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5. Examples

5.1. Let us formulate and solve a bi-temporal optimal problem with pointwise state
constraints:

o
rmn —/ ) —sin(2mt'1?))2 de'dr* + = u?(t)dr'dr®
Qi1 Qi
subject to
—Ax(t) = u(t),t € Q3 x(t) = 0forr € Iy, .
To solve this problem we apply the two-time maximum principle via second-order
constraints. For that, we introduce the Lagrangian
1 o
L =—5(() - sin(2mr'1?))? — Euz(t) + p(0) (Ax(r) + u(2)).

Since lh“ﬁ =—8% n*=o, aL = —(x(¢) —sin(27t'£?)), the adjoint PDE is
x(1) = sin2mt' ) + Ap(t) = 0, plag,, =0.
On the other hand, the critical point condition gives p(z) = au(t). Suppose o > 0.

5.1.1. Case of homogeneous PDE system. The associated homogeneous system implies
1 1
A%x(t) = — x(t), A%u(t) = — u(t).
X(1) = — +(1), A%u(t) = — u()

These PDEs show that we have to solve the eigenvalues problem
1

Au(r) = p u(t), “(t)|<m,01] =

Looking for the solution of the form
u(t) = u(r',r?) =sind (t' — 1)) sinAy (> —13),

we find the characteristic equation

1
12 2 _ .
P =E0E
For
A/l = %\/&COS(P, 12: %\/asin(P

we get a first solution
up(t) =sin Ay (1! — 1) sinda (1> — 1),

of the PDE. For
A3 =

cosQ, Ay = sin@

1 1
Ve Ve
we find the second solution

up (1) = sinAz (¢! —1d) sinAq(r* —13)
of the PDE. The general solution of the PDE is
u(t) = cruy (t) 4 coun(1).
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The boundary conditions imply

nw M
05 ll 1 1 712 2 2
=1 =1
nt\? mr \?
=) " 22—
1o 0
We fix the values n and m. A solution of the homogeneous PDE system Ax = —u,

aAu = —x, with vanishing boundary conditions, is

m(! —¢) w(t? —12
n( 0) sinm ( o)

T SRV
I =1y =t

2 2
u(t' ,t°) = (11) + (22> x(t7,1).
=1 =1

5.1.2. Case of non-homogeneous PDE system. The functions

1 1 2 2
Tt —t, m —
n( 0) in m(t” —15)
n -1

x(t',¢%) = Asin

and

o™ (1,1%) = 2(1} —13) "2 (1} —13) Z sin

1
L
are orthonormal eigenfunctions of the Laplacian operator corresponding to the eigenvalues

nt\? mr \?
m=\— 1) tlp=z) -
1 —1 71
These eigenfunctions determine a complete system on L?(Qy, ).
We look for the solutions of the PDE system

Ax = —u, aAu = —x+sin(2mt'1?)

in the form (Einstein convention of summation)
x(t17[2) - aﬂm(an(tlatz)a M(tlatz) = ﬁnm(an(tlatz)'

Replacing in the PDEs, we obtain the systems

)an Oy + ﬁnm = O, Oy + O‘Anmﬁnm = Yam;

where
sin(27t'1%) = Y @™ (11, 1%),
with
t
Yom = 4(t} —18)71( *1/1/ sin(27r'e?) @™ (¢!, %) dt' dr?.
l‘ t
The coefficients
}/nm Ynm)vnm
foAm— =
nm A’rg}n 1 ) .Bnm alr%m _

determine the optimal control u(t!,#%) and the optimal evolution x(¢',7?).
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5.1.3. Laplace approach for non-homogeneous PDE system. Let us find a solution of the
non-homogeneous PDE system

Ax(t) = —u(r), adu(t) = —x(t) +sin(27' 1),

with vanishing boundary conditions. We apply a bi-dimensional Laplace transform

X(p1,p2) // (t',2)e (1" +2) gyl gg?

U(pi,p2) / / (t',1%) ~(p1t'+p2?) g1 g2

The non-homogeneous PDE system is transformed into
(Pi+P2)X(p1,p2) +U(p1,p2) =0,

a(pi +p3)U(p1,p2) +X(p1,p2) = —% (CiTIcosIT+ SiIlsinII),
where IT = 222 Tt follows
1 CillcosIT+ SillsinII
2 a(pi+p3) -1

U(p1,p2) = —(pi+p2)X(p1,p2).
The optimal control and the optimal evolution are obtained by

a+ioo b+toc
u(t!,r?) 477,-2/ /h U, 1) e”" +pat? dpidp
a—

oo

X(p17p2) =

a+ioo b+loo
x(t',1?) 4;12/ /b X', e”" +pat? dpidps.
a—

5.2. The single-time case is well-known as optimal monetary policy. In this case, the PDE
is replaced by the ODE

a2
7jc'(t) +ax(t) +x(t) =u(t),t €0,T] 4)

x(0) = x0,x(T) = x7,%(T) =0,
where x is the proportional rate of growth of money income, the control u = m + brir, where
m= % is a proportional rate of change of money supply M(¢), b = const and a is a constant
representing the length of the business cycle.

Some institutional and economic reasons ask |u(¢)| < 0.1. The terminal value T means
some future date. The conditions x(T') = xr, X(T) = 0 show that we can achieve a stable
rate of growth of national income, using an optimal money supply police. This objective is
equivalent to:

min/(u / dt subject to (4).

To solve this problem we apply the maximum principle via second-order constraints. Having
a linear optimal control with
2

L =—1+p() (az (@) +ax(t) +x(t) — u(t))
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2
a
=~ 14.00) (5400 +ax0)+x0)) — po)uC),
the switching function is ¢ = —p, and the optimal control

N 0.1 if p()>0
u(t) = { —0.1 if p(t)<0
is a bang-bang control. We add the adjoint boundary problem

2
a .
5 P(t) —ap(t)+p(t) =0, p(0) = po, p(T) =0.
The general solution
p(t) = e™ (B cosat + By sinat)

and the boundary conditions give the optimal Lagrange multiplier

T
p(t) = e™(cosat — Cf)saT sinat) po.

For u*(¢) = 0.1, we obtain the general optimal evolution

x(t) = e “(C) cosat + Cysinat) + 0.05.

Imposing the boundary conditions, we must have
(xr — O.OS)e"T = CjcosaTl + CysinaT
(G, —Cy)cosaT — (Co+Cy)sinaT =0,

or

(oer — O.OS)eaT = Cjcosal +CysinaT, (xr — O.OS)e“T = Cycosal —C;sinaT .
It follows
C| = (x7 —0.05)e? (cosaT —sinaT), C, = (xr —0.05)eT (sinaT +cosaT).

Remark: If we want to find a solution by discretization, then we must have in mind that
“discretized-then-optimize and optimize-then-discretized” are two different approaches. One
is not universally better than the other.
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