Vol. 91, No. 1, A2 (2013)

MULTITIME OPTIMAL CONTROL WITH SECOND-ORDER PDES CONSTRAINTS

Constantin Udrişte *

Abstract

In this paper we study a simplified version of multitime optimal control problem for linear second-order partial differential equations (PDE). The multitime multiple integral functional is of Lagrange type. Necessary optimality conditions of multitime maximum principle type are derived. The multitime optimal control with second-order PDE constraints can be analyzed in three ways: as problems governed by (i) explicit m flows, (ii) implicit m-flows, and (iii) second-order PDEs. All directions lead to variants of multitime maximum principle. The theoretical results are confirmed by solving two significant problems.

1. Introduction

Partial differential equations (PDE) constrained optimization is a very active area, as indicated by the large number of talks/symposia and papers. In this paper, our aim is to prove a simplified multitime maximum principle for optimal control problems governed by linear second-order PDEs. The control is distributed and takes values in an interval. Although the problem is known (Bardi and Capuzzo-Dolcetta 1997; Becker, Kapp, and Rannacher 2000; Hinze et al. 2009; Lions 1971; Tröltzsch 2010; Yong 1992, 1993), our technique is a simpler solution than that of published works (see also Udrişte 2008; Udrişte 2009[a],[b], 2010, 2011; Udrişte and Bejenaru 2011; Udrişte and Ţevy 2009, 2010).

In a PDE constrained optimization problem there are four basic elements: (i) A control u that we can handle according to our interests, which can be chosen among a family of feasible controls \mathscr{U}. (ii) The state of the system x to be controlled, which depends on the control. Some limitations can be imposed on the state, in mathematical terms $x \in C$, which means that not every possible state of the system is satisfactory. (iii) A state PDE that establishes the dependence between the control and the state. (iv) A functional $J(u(\cdot))$ to be extremized, called the objective functional or the cost functional, depending on the control and the state.

In the next sections the state equation will be a linear second-order PDE (partial differential equation), $x(t)$ being the solution of the equation and $u(t)$ a control arising in the equation so that any change in the control $u(t)$ produces a change in the solution $x(t)$. The objective is to determine an admissible control, called optimal control, that provides a satisfactory state for us and that extremizes the value of functional $J(u(\cdot))$. The basic questions to study are the necessary conditions, the existence of solution and its computation.

2. Setting of optimal control problem

Let $\Omega_{t_{0} t_{1}} \in R_{+}^{m}$ be a hyper-parallelepiped determined by the diagonal opposite points $t_{0}, t_{1} \in R_{+}^{m}$. In $\Omega_{t_{0} t_{1}}$ we will consider the controlled linear second-order PDE

$$
\begin{equation*}
\frac{1}{2} h^{\alpha \beta}(t) \frac{\partial^{2} x}{\partial t^{\alpha} \partial t^{\beta}}(t)+h^{\alpha}(t) \frac{\partial x}{\partial t^{\alpha}}(t)+x(t)=u(t) . \tag{1}
\end{equation*}
$$

If $\left(h^{\alpha \beta}\right) \in C^{2}\left(\Omega_{t_{0} t_{1}}\right),\left(h^{\alpha}\right) \in L^{2}\left(\Omega_{t_{0} t_{1}}\right)$ and $u \in L^{2}\left(\Omega_{t_{0} t_{1}}\right)$, then the Dirichlet problem fixed by $x=0$ on $\partial \Omega_{t_{0} t_{1}}$, and some other additional conditions depending on the type of equation (elliptic, parabolic, hyperbolic), has a unique solution $x \in H_{0}^{1}\left(\Omega_{t_{0} t_{1}}\right) \cap L^{\infty}\left(\Omega_{t_{0} t_{1}}\right)$.

It is supposed that the Lagrangian $L: \Omega_{t_{0} t_{1}} \times A \times U \rightarrow R$ is a C^{2} function, $A \subset R^{n}$ is a bounded and closed subset, which contains the m-sheet $x(t), t \in \Omega_{t_{0} t_{1}}$ of controlled PDE, the function $u: \Omega_{t_{0} t_{1}} \rightarrow[a, b]$ is the control and $d t^{1} \cdots d t^{m}$ is the volume element.

Problem: find

$$
\begin{equation*}
\max _{u(\cdot)} \int_{\Omega_{t_{0} t_{1}}} L(t, x(t), u(t)) d t^{1} \ldots d t^{m} \tag{2}
\end{equation*}
$$

constrained by the PDE (1).

3. Multitime maximum principle via first order constraints

For solving the foregoing problem, using simplifying reasonings, we prefer to transform the second-order PDE into a first order PDE system as in our papers (Udrişte 2008; Udrişte 2009[a],[b], 2010, 2011; Udrişte and Bejenaru 2011; Udrişte and Ţevy 2009, 2010):

$$
\begin{gather*}
\frac{\partial x}{\partial t^{\alpha}}(t)=v_{\alpha}(t), \frac{\partial v_{\alpha}}{\partial t^{\beta}}(t)=\frac{\partial v_{\beta}}{\partial t^{\alpha}}(t) \\
\frac{1}{2} h^{\alpha \beta}(t) \frac{\partial v_{\alpha}}{\partial t^{\beta}}(t)+h^{\alpha}(t) v_{\alpha}(t)+x(t)=u(t) . \tag{3}
\end{gather*}
$$

We use the generalized Lagrangian

$$
\begin{aligned}
\mathscr{L}= & L+p^{\alpha}(t)\left(v_{\alpha}(t)-\frac{\partial x}{\partial t^{\alpha}}(t)\right)+p^{\alpha \beta}\left(\frac{\partial v_{\alpha}}{\partial t^{\beta}}(t)-\frac{\partial v_{\beta}}{\partial t^{\alpha}}(t)\right) \\
& +q(t)\left(\frac{1}{2} h^{\alpha \beta}(t) \frac{\partial v_{\alpha}}{\partial t^{\beta}}(t)+h^{\alpha}(t) v_{\alpha}(t)+x(t)-u(t)\right)
\end{aligned}
$$

or simplified

$$
\mathscr{L}=L+\left(p^{\alpha}+q h^{\alpha}\right) v_{\alpha}-p^{\alpha} \frac{\partial x}{\partial t^{\alpha}}+\left(p^{\alpha \beta}-p^{\beta \alpha}+\frac{1}{2} q h^{\alpha \beta}\right) \frac{\partial v_{\alpha}}{\partial t^{\beta}}+q(x-u) .
$$

The attached Hamiltonian is

$$
H=L+\left(p^{\alpha}+q h^{\alpha}\right) v_{\alpha}+q(x-u) .
$$

The Lagrange multipliers $p^{\alpha}, p^{\alpha \beta}, q$ corresponding to pointwise control constraints are C^{1} functions.

Theorem (multitime maximum principle) Suppose that the problem of maximizing the functional (2) constrained by (1) has an interior optimal solution $u^{*}(t)$, which determines
the optimal evolution $x(t)$. Then there exists the costate functions $p^{\alpha}(t), p^{\alpha \beta}(t), q(t)$ such that
(initial system)

$$
\begin{aligned}
& \frac{\partial x}{\partial t^{\alpha}}=\frac{\partial H}{\partial p^{\alpha}}, \frac{\partial H}{\partial p^{\alpha \beta}}=0, \frac{\partial H}{\partial q}=0 \\
& \frac{\partial H}{\partial x}+\frac{\partial p^{\alpha}}{\partial t^{\alpha}}=0, \frac{\partial H}{\partial v_{\alpha}}-\frac{\partial p^{\alpha \beta}}{\partial t^{\beta}}=0
\end{aligned}
$$

(ad joint or dual system)
(critical point condition)

$$
\frac{\partial H}{\partial u}=0
$$

hold.
Proof. Firstly, we find the infinitesimal deformation PDE system (3). We fix the control $u(t)$ and we variate the state $x(t)$ into $x(t, \varepsilon)$. Denote $\frac{\partial x}{\partial \varepsilon}(t, 0)=y, \frac{\partial v \alpha}{\partial \varepsilon}(t, 0)=w_{\alpha}$. The infinitesimal deformation PDE system is

$$
\begin{gathered}
\frac{\partial y}{\partial t^{\alpha}}=w_{\alpha}, \frac{\partial w_{\alpha}}{\partial t^{\beta}}=\frac{\partial w_{\beta}}{\partial t^{\alpha}} \\
\frac{1}{2} h^{\alpha \beta}(t) \frac{\partial w_{\alpha}}{\partial t^{\beta}}(t)+h^{\alpha}(t) w_{\alpha}(t)+y(t)=0 .
\end{gathered}
$$

Then, the adjoint PDE system is

$$
y \frac{\partial p^{\alpha}}{\partial t^{\alpha}}=p^{\alpha} w_{\alpha}, w_{\alpha} \frac{\partial p^{\alpha \beta}}{\partial t^{\beta}}=p^{\alpha \beta} \frac{\partial w_{\alpha}}{\partial t^{\beta}}, \frac{1}{2} h^{\alpha \beta} w_{\alpha} \frac{\partial q}{\partial t^{\beta}}=-q\left(h^{\alpha} w_{\alpha}+y\right) .
$$

The sense of adjointness is

$$
p^{\alpha} L_{\alpha} y-y M_{\alpha} p^{\alpha}=0, w_{\alpha} P_{\beta} p^{\alpha \beta}-p^{\alpha \beta} Q_{\beta} w_{\alpha}=0, q h^{\alpha \beta} R_{\beta} w_{\alpha}-h^{\alpha \beta} w_{\alpha} S_{\beta} q=0
$$

where L_{α} and M_{α}, P_{α} and Q_{α}, R_{α} and S_{α} are linear second-order partial differential operators.

Secondly, let $u(t)$ be an optimal control. A variation $\hat{u}=u+\varepsilon h$ of the control determines the variation of the state $x=x(t ; \varepsilon)$. The first variation of the Lagrangian \mathscr{L} is

$$
\begin{gathered}
\left.\frac{\partial \mathscr{L}}{\partial \varepsilon}\right|_{\varepsilon=0}=\frac{\partial L}{\partial x} x_{\varepsilon}(t, 0)+\frac{\partial L}{\partial u} h+\left(p^{\alpha}+q h^{\alpha}\right) \frac{\partial v_{\alpha}}{\partial \varepsilon}(t, 0) \\
-p^{\alpha} \frac{\partial x_{\varepsilon}}{\partial t^{\alpha}}(t, 0)+\left(p^{\alpha \beta}-p^{\beta \alpha}+\frac{1}{2} q h^{\alpha \beta}\right) \frac{\partial v_{\alpha \varepsilon}}{\partial t^{\beta}}(t, 0)+q x_{\varepsilon}(t, 0)-q h .
\end{gathered}
$$

For integration by parts (divergence formula), we use the identities

$$
\begin{gathered}
-p^{\alpha}(t) \frac{\partial x_{\varepsilon}}{\partial t^{\alpha}}(t, 0)=\frac{\partial p^{\alpha}}{\partial t^{\alpha}}(t) x_{\mathcal{\varepsilon}}(t, 0)-\frac{\partial}{\partial t^{\alpha}}\left(p^{\alpha}(t) x_{\varepsilon}(t, 0)\right) \\
p^{\alpha \beta}(t) \frac{\partial v_{\alpha \varepsilon}}{\partial t^{\beta}}(t, 0)=\frac{\partial}{\partial t^{\beta}}\left(p^{\alpha \beta}(t) v_{\alpha \varepsilon}(t, 0)\right)-\frac{\partial p^{\alpha \beta}}{\partial t^{\beta}}(t) v_{\alpha \varepsilon}(t, 0) .
\end{gathered}
$$

The condition $I^{\prime}(0)=0$ means vanishing of the integral

$$
\begin{aligned}
\int_{\Omega}\left(\frac{\partial L}{\partial x}\right. & \left.+\frac{\partial p^{\alpha}}{\partial t^{\alpha}}+q\right) x_{\varepsilon}(t, 0)+\left(p^{\alpha}+q h^{\alpha}-\frac{\partial p^{\alpha \beta}}{\partial t^{\beta}}\right) v_{\alpha \varepsilon}(t, 0)+\left(\frac{\partial L}{\partial u}-q\right) h \\
& -\int_{\partial \Omega} p^{\alpha}(t) n_{\alpha}(t) x_{\varepsilon}(t, 0)+\int_{\partial \Omega}\left(p^{\alpha \beta}(t)-p^{\beta \alpha}(t)\right) v_{\alpha \varepsilon}(t) n_{\beta}(t)
\end{aligned}
$$

taking into account the adjoint PDEs, the boundary conditions, and arbitrariness of h.
Using the adjoint PDE system, it follows

$$
\frac{\partial H}{\partial x}+\frac{\partial p^{\alpha}}{\partial t^{\alpha}}=0, \frac{\partial H}{\partial v_{\alpha}}-\frac{\partial p^{\alpha \beta}}{\partial t^{\beta}}=0,\left.p^{\alpha}\right|_{\partial \Omega_{t_{0} t_{1}}}=0,\left.p^{\alpha \beta}\right|_{\partial \Omega_{t_{0} t_{1}}}=0
$$

and hence

$$
\frac{\partial H}{\partial u}=0
$$

Remark: If $u^{*}(t)$ is not an interior optimal control, then the critical point condition is replaced by

$$
H\left(x^{*}(t), p^{*}(t), u^{*}(t)\right)=\max _{u \in U} H\left(x^{*}(t), p^{*}(t), u\right), t \in \Omega_{t_{0} t_{1}}
$$

From the critical point condition, we understand that L cannot be independent of "u"; if L is independent of " u ", then the foregoing theory must be changed - in fact the Hamiltonian is linear in control and we obtain a bang-bang solution.

4. Multitime maximum principle via second-order constraints

The key tool to get the necessary conditions for optimality works directly. Indeed, let us start with the generalized Lagrangian

$$
\mathscr{L}=L+p(t)\left(-\frac{1}{2} h^{\alpha \beta}(t) \frac{\partial^{2} x}{\partial t^{\alpha} \partial t^{\beta}}(t)-h^{\alpha}(t) \frac{\partial x}{\partial t^{\alpha}}(t)-x(t)+u(t)\right)
$$

and its associated Hamiltonian

$$
\mathscr{H}=L+p\left(-h^{\alpha} \frac{\partial x}{\partial t^{\alpha}}-x+u\right) .
$$

The Lagrange multipliers p corresponding to pointwise control constraints is a C^{1} function.
Theorem (multitime maximum principle) Suppose that the problem of maximizing the functional (2) constrained by (1) has an interior optimal solution $u^{*}(t)$, which determines the optimal evolution $x(t)$. Then there exists the costate functions $p(t)$ such that
(initial PDE)

$$
\frac{1}{2} h^{\alpha \beta}(t) \frac{\partial^{2} x}{\partial t^{\alpha} \partial t^{\beta}}(t)=\frac{\partial \mathscr{H}}{\partial p}
$$

(adjoint or dual equation)

$$
\frac{1}{2} \frac{\partial^{2}\left(p h^{\alpha \beta}\right)}{\partial t^{\alpha} \partial t^{\beta}}-\frac{\partial\left(p h^{\alpha}\right)}{\partial t^{\alpha}}=\frac{\partial \mathscr{H}}{\partial x},
$$

(critical point condition)

$$
\frac{\partial \mathscr{H}}{\partial u}=0
$$

hold.
Proof. Firstly, we find the infinitesimal deformation of PDE (1). We fix the control $u(t)$ and we variate the state $x(t)$ into $x(t, \varepsilon)$. Denote $\frac{\partial x}{\partial \varepsilon}(t, 0)=y(t)$. The infinitesimal deformation PDE is

$$
\frac{1}{2} h^{\alpha \beta}(t) \frac{\partial^{2} y}{\partial t^{\alpha} \partial t^{\beta}}(t)+h^{\alpha}(t) \frac{\partial y}{\partial t^{\alpha}}(t)+y(t)=0 .
$$

The adjoint PDE is

$$
\frac{1}{2} \frac{\partial^{2}\left(h^{\alpha \beta} p\right)}{\partial t^{\alpha} \partial t^{\beta}}(t)-\frac{\partial\left(h^{\alpha} p\right)}{\partial t^{\alpha}}(t)+p(t)=0 .
$$

The adjointness has the sense $p L y-y M p=0$, where L and M are linear second-order partial differential operators.

The variation $\hat{u}=u+\varepsilon h$ of the control determines the variation of the state $x=x(t ; \varepsilon)$. The first variation of the Lagrangian \mathscr{L} is

$$
\begin{gathered}
\left.\frac{\partial \mathscr{L}}{\partial \varepsilon}\right|_{\varepsilon=0}=\frac{\partial L}{\partial x} x_{\varepsilon}(t, 0)+\frac{\partial L}{\partial u} h \\
p(t)\left(-\frac{1}{2} h^{\alpha \beta}(t) \frac{\partial^{2} x_{\varepsilon}}{\partial t^{\alpha} \partial t^{\beta}}(t, 0)-h^{\alpha}(t) \frac{\partial x_{\varepsilon}}{\partial t^{\alpha}}(t, 0)-x_{\varepsilon}(t, 0)+h(t)\right) .
\end{gathered}
$$

For integration by parts (divergence formula), we use the identities

$$
\begin{gathered}
p(t) h^{\alpha}(t) \frac{\partial x_{\varepsilon}}{\partial t^{\alpha}}(t, 0)=\frac{\partial}{\partial t^{\alpha}}\left(p(t) h^{\alpha}(t) x_{\varepsilon}(t, 0)\right)-\frac{\partial\left(p h^{\alpha}\right)}{\partial t^{\alpha}}(t) x_{\varepsilon}(t, 0) \\
p(t) h^{\alpha \beta}(t) \frac{\partial^{2} x_{\varepsilon}}{\partial t^{\alpha} \partial t^{\beta}}(t, 0)=\frac{\partial}{\partial t^{\alpha}}\left(p(t) h^{\alpha \beta}(t) \frac{\partial x_{\varepsilon}}{\partial t^{\beta}}(t, 0)\right)-\frac{\partial\left(p h^{\alpha \beta}\right)}{\partial t^{\alpha}}(t) \frac{\partial x_{\varepsilon}}{\partial t^{\beta}}(t, 0) \\
\frac{\partial\left(p h^{\alpha \beta}\right)}{\partial t^{\alpha}}(t) \frac{\partial x_{\varepsilon}}{\partial t^{\beta}}(t, 0)=\frac{\partial}{\partial t^{\beta}}\left(\frac{\partial\left(p h^{\alpha \beta}\right)}{\partial t^{\alpha}}(t) x_{\varepsilon}(t, 0)\right)-\frac{\partial^{2}\left(p h^{\alpha \beta}\right)}{\partial t^{\alpha} \partial t^{\beta}}(t) x_{\varepsilon}(t, 0) .
\end{gathered}
$$

The condition $I^{\prime}(0)=0$ means vanishing of the integral

$$
\begin{gathered}
\int_{\Omega}\left(\frac{\partial L}{\partial x}-\frac{1}{2} \frac{\partial^{2}\left(p h^{\alpha \beta}\right)}{\partial t^{\alpha} \partial t^{\beta}}+\frac{\partial\left(p h^{\alpha}\right)}{\partial t^{\alpha}}-p\right) x_{\varepsilon}(t, 0)+\left(\frac{\partial L}{\partial u}+p\right) h \\
-\frac{1}{2} \int_{\partial \Omega} p h^{\alpha \beta} n_{\alpha} \frac{\partial x_{\varepsilon}}{\partial t^{\beta}}+\frac{1}{2} \int_{\partial \Omega} \frac{\partial\left(p h^{\alpha \beta}\right)}{\partial t^{\alpha}} n_{\beta} x_{\varepsilon}+\int_{\partial \Omega} p h^{\alpha} n_{\alpha} x_{\varepsilon},
\end{gathered}
$$

taking into account the adjoint PDE, the boundary conditions, and arbitrariness of h.
Using the adjoint PDE equation, it follows

$$
\frac{\partial L}{\partial x}-\frac{1}{2} \frac{\partial^{2}\left(p h^{\alpha \beta}\right)}{\partial t^{\alpha} \partial t^{\beta}}+\frac{\partial\left(p h^{\alpha}\right)}{\partial t^{\alpha}}-p=0,\left.p\right|_{\partial \Omega_{t_{0} t_{1}}}=0
$$

and hence

$$
\frac{\partial L}{\partial u}+p=0 .
$$

Remarks: (i) If $u^{*}(t)$ is not an interior optimal control, then the critical point condition is replaced by

$$
\mathscr{H}\left(x^{*}(t), p^{*}(t), u^{*}(t)\right)=\max _{u \in U} \mathscr{H}\left(x^{*}(t), p^{*}(t), u\right), t \in \Omega_{t_{0} t_{1}} .
$$

5. Examples

5.1. Let us formulate and solve a bi-temporal optimal problem with pointwise state constraints:

$$
\min _{u(\cdot)} \frac{1}{2} \int_{\Omega_{t_{0^{+}} 1}}\left(x(t)-\sin \left(2 \pi t^{1} t^{2}\right)\right)^{2} d t^{1} d t^{2}+\frac{\alpha}{2} \int_{\Omega_{t_{0} t_{1}}} u^{2}(t) d t^{1} d t^{2}
$$

subject to

$$
-\Delta x(t)=u(t), t \in \Omega_{t_{0} t_{1}} ; x(t)=0 \text { for } t \in \partial \Omega_{t_{0} t_{1}} .
$$

To solve this problem we apply the two-time maximum principle via second-order constraints. For that, we introduce the Lagrangian

$$
\mathscr{L}=-\frac{1}{2}\left(x(t)-\sin \left(2 \pi t^{1} t^{2}\right)\right)^{2}-\frac{\alpha}{2} u^{2}(t)+p(t)(\Delta x(t)+u(t)) .
$$

Since $\frac{1}{2} h^{\alpha \beta}=-\delta^{\alpha \beta}, h^{\alpha}=0, \frac{\partial L}{\partial x}=-\left(x(t)-\sin \left(2 \pi t^{1} t^{2}\right)\right)$, the adjoint PDE is

$$
x(t)-\sin \left(2 \pi t^{1} t^{2}\right)+\Delta p(t)=0,\left.p\right|_{\partial \Omega_{t_{0} t_{1}}}=0 .
$$

On the other hand, the critical point condition gives $p(t)=\alpha u(t)$. Suppose $\alpha>0$.
5.1.1. Case of homogeneous PDE system. The associated homogeneous system implies

$$
\Delta^{2} x(t)=\frac{1}{\alpha} x(t), \Delta^{2} u(t)=\frac{1}{\alpha} u(t) .
$$

These PDEs show that we have to solve the eigenvalues problem

$$
\Delta^{2} u(t)=\frac{1}{\alpha} u(t),\left.u(t)\right|_{\partial \Omega_{t_{0} t_{1}}}=0 .
$$

Looking for the solution of the form

$$
u(t)=u\left(t^{1}, t^{2}\right)=\sin \lambda_{1}\left(t^{1}-t_{0}^{1}\right) \sin \lambda_{2}\left(t^{2}-t_{0}^{2}\right),
$$

we find the characteristic equation

$$
\lambda_{1}^{2}+\lambda_{2}^{2}= \pm \frac{1}{\sqrt{\alpha}}
$$

For

$$
\lambda_{1}=\frac{i}{\sqrt[4]{\alpha}} \cos \varphi, \lambda_{2}=\frac{i}{\sqrt[4]{\alpha}} \sin \varphi
$$

we get a first solution

$$
u_{1}(t)=\sin \lambda_{1}\left(t^{1}-t_{0}^{1}\right) \sin \lambda_{2}\left(t^{2}-t_{0}^{2}\right),
$$

of the PDE. For

$$
\lambda_{3}=\frac{1}{\sqrt[4]{\alpha}} \cos \varphi, \lambda_{4}=\frac{1}{\sqrt[4]{\alpha}} \sin \varphi
$$

we find the second solution

$$
u_{2}(t)=\sin \lambda_{3}\left(t^{1}-t_{0}^{1}\right) \sin \lambda_{4}\left(t^{2}-t_{0}^{2}\right)
$$

of the PDE. The general solution of the PDE is

$$
u(t)=c_{1} u_{1}(t)+c_{2} u_{2}(t) .
$$

The boundary conditions imply

$$
\begin{gathered}
c_{1}=0, \lambda_{1}=\frac{n \pi}{t_{1}^{1}-t_{0}^{1}}, \lambda_{2}=\frac{m \pi}{t_{1}^{2}-t_{0}^{2}} \\
\alpha=\left[\left(\frac{n \pi}{t_{1}^{1}-t_{0}^{1}}\right)^{2}+\left(\frac{m \pi}{t_{1}^{2}-t_{0}^{2}}\right)^{2}\right]^{-2} .
\end{gathered}
$$

We fix the values n and m. A solution of the homogeneous PDE system $\Delta x=-u$, $\alpha \Delta u=-x$, with vanishing boundary conditions, is

$$
x\left(t^{1}, t^{2}\right)=A \sin \frac{n \pi\left(t^{1}-t_{0}^{1}\right)}{t_{1}^{1}-t_{0}^{1}} \sin \frac{m \pi\left(t^{2}-t_{0}^{2}\right)}{t_{1}^{2}-t_{0}^{2}}
$$

and

$$
u\left(t^{1}, t^{2}\right)=\left[\left(\frac{n \pi}{t_{1}^{1}-t_{0}^{1}}\right)^{2}+\left(\frac{m \pi}{t_{1}^{2}-t_{0}^{2}}\right)^{2}\right] x\left(t^{1}, t^{2}\right)
$$

5.1.2. Case of non-homogeneous PDE system. The functions

$$
\varphi^{n m}\left(t^{1}, t^{2}\right)=2\left(t_{1}^{1}-t_{0}^{1}\right)^{-\frac{1}{2}}\left(t_{1}^{2}-t_{0}^{2}\right)^{-\frac{1}{2}} \sin \frac{n \pi\left(t^{1}-t_{0}^{1}\right)}{t_{1}^{1}-t_{0}^{1}} \sin \frac{m \pi\left(t^{2}-t_{0}^{2}\right)}{t_{1}^{2}-t_{0}^{2}}
$$

are orthonormal eigenfunctions of the Laplacian operator corresponding to the eigenvalues

$$
\lambda_{n m}=\left(\frac{n \pi}{t_{1}^{1}-t_{0}^{1}}\right)^{2}+\left(\frac{m \pi}{t_{1}^{2}-t_{0}^{2}}\right)^{2}
$$

These eigenfunctions determine a complete system on $L^{2}\left(\Omega_{t_{0} t_{1}}\right)$.
We look for the solutions of the PDE system

$$
\Delta x=-u, \alpha \Delta u=-x+\sin \left(2 \pi t^{1} t^{2}\right)
$$

in the form (Einstein convention of summation)

$$
x\left(t^{1}, t^{2}\right)=\alpha_{n m} \varphi^{n m}\left(t^{1}, t^{2}\right), u\left(t^{1}, t^{2}\right)=\beta_{n m} \varphi^{n m}\left(t^{1}, t^{2}\right)
$$

Replacing in the PDEs, we obtain the systems

$$
\lambda_{n m} \alpha_{n m}+\beta_{n m}=0, \alpha_{n m}+\alpha \lambda_{n m} \beta_{n m}=\gamma_{n m}
$$

where

$$
\sin \left(2 \pi t^{1} t^{2}\right)=\gamma_{n m} \varphi^{n m}\left(t^{1}, t^{2}\right)
$$

with

$$
\gamma_{n m}=4\left(t_{1}^{1}-t_{0}^{1}\right)^{-1}\left(t_{1}^{2}-t_{0}^{2}\right)^{-1} \int_{t_{0}^{1}}^{t_{1}^{1}} \int_{t_{0}^{2}}^{t_{1}^{2}} \sin \left(2 \pi t^{1} t^{2}\right) \varphi^{n m}\left(t^{1}, t^{2}\right) d t^{1} d t^{2}
$$

The coefficients

$$
\alpha_{n m}=\frac{-\gamma_{n m}}{\alpha \lambda_{n m}^{2}-1}, \beta_{n m}=\frac{\gamma_{n m} \lambda_{n m}}{\alpha \lambda_{n m}^{2}-1}
$$

determine the optimal control $u\left(t^{1}, t^{2}\right)$ and the optimal evolution $x\left(t^{1}, t^{2}\right)$.
5.1.3. Laplace approach for non-homogeneous PDE system. Let us find a solution of the non-homogeneous PDE system

$$
\Delta x(t)=-u(t), \alpha \Delta u(t)=-x(t)+\sin \left(2 \pi t^{1} t^{2}\right),
$$

with vanishing boundary conditions. We apply a bi-dimensional Laplace transform

$$
\begin{aligned}
& X\left(p_{1}, p_{2}\right)=\int_{0}^{\infty} \int_{0}^{\infty} x\left(t^{1}, t^{2}\right) e^{-\left(p_{1} t^{1}+p_{2} t^{2}\right)} d t^{1} d t^{2} \\
& U\left(p_{1}, p_{2}\right)=\int_{0}^{\infty} \int_{0}^{\infty} u\left(t^{1}, t^{2}\right) e^{-\left(p_{1} t^{1}+p_{2} t^{2}\right)} d t^{1} d t^{2}
\end{aligned}
$$

The non-homogeneous PDE system is transformed into

$$
\begin{gathered}
\left(p_{1}^{2}+p_{2}^{2}\right) X\left(p_{1}, p_{2}\right)+U\left(p_{1}, p_{2}\right)=0 \\
\alpha\left(p_{1}^{2}+p_{2}^{2}\right) U\left(p_{1}, p_{2}\right)+X\left(p_{1}, p_{2}\right)=-\frac{1}{2 \pi}(C i \Pi \cos \Pi+S i \Pi \sin \Pi)
\end{gathered}
$$

where $\Pi=\frac{p_{1} p_{2}}{2 \pi}$. It follows

$$
\begin{gathered}
X\left(p_{1}, p_{2}\right)=\frac{1}{2 \pi} \frac{C i \Pi \cos \Pi+S i \Pi \sin \Pi}{\alpha\left(p_{1}^{2}+p_{2}^{2}\right)^{2}-1} \\
U\left(p_{1}, p_{2}\right)=-\left(p_{1}^{2}+p_{2}^{2}\right) X\left(p_{1}, p_{2}\right)
\end{gathered}
$$

The optimal control and the optimal evolution are obtained by

$$
\begin{aligned}
& u\left(t^{1}, t^{2}\right)=-\frac{1}{4 \pi^{2}} \int_{a-i \infty}^{a+i \infty} \int_{b-i \infty}^{b+i \infty} U\left(t^{1}, t^{2}\right) e^{p_{1} t^{1}+p_{2} t^{2}} d p_{1} d p_{2} \\
& x\left(t^{1}, t^{2}\right)=-\frac{1}{4 \pi^{2}} \int_{a-i \infty}^{a+i \infty} \int_{b-i \infty}^{b+i \infty} X\left(t^{1}, t^{2}\right) e^{p_{1} t^{1}+p_{2} t^{2}} d p_{1} d p_{2}
\end{aligned}
$$

5.2. The single-time case is well-known as optimal monetary policy. In this case, the PDE is replaced by the ODE

$$
\begin{gather*}
\frac{a^{2}}{2} \ddot{x}(t)+a \dot{x}(t)+x(t)=u(t), t \in[0, T] \tag{4}\\
x(0)=x_{0}, x(T)=x_{T}, \dot{x}(T)=0,
\end{gather*}
$$

where x is the proportional rate of growth of money income, the control $u=m+b \dot{m}$, where $m=\frac{\dot{H}}{M}$ is a proportional rate of change of money supply $M(t), b=$ const and a is a constant representing the length of the business cycle.

Some institutional and economic reasons ask $|u(t)| \leq 0.1$. The terminal value T means some future date. The conditions $x(T)=x_{T}, \dot{x}(T)=0$ show that we can achieve a stable rate of growth of national income, using an optimal money supply police. This objective is equivalent to:

$$
\min I(u(\cdot))=\int_{0}^{T} d t \quad \text { subject to }(4)
$$

To solve this problem we apply the maximum principle via second-order constraints. Having a linear optimal control with

$$
\mathscr{L}=-1+p(t)\left(\frac{a^{2}}{2} \ddot{x}(t)+a \dot{x}(t)+x(t)-u(t)\right)
$$

$$
=-1+p(t)\left(\frac{a^{2}}{2} \ddot{x}(t)+a \dot{x}(t)+x(t)\right)-p(t) u(t),
$$

the switching function is $\sigma=-p$, and the optimal control

$$
u^{*}(t)=\left\{\begin{array}{rll}
0.1 & \text { if } & p(t)>0 \\
-0.1 & \text { if } & p(t)<0
\end{array}\right.
$$

is a bang-bang control. We add the adjoint boundary problem

$$
\frac{a^{2}}{2} \ddot{p}(t)-a \dot{p}(t)+p(t)=0, p(0)=p_{0}, p(T)=0
$$

The general solution

$$
p(t)=e^{a t}\left(B_{1} \cos a t+B_{2} \sin a t\right)
$$

and the boundary conditions give the optimal Lagrange multiplier

$$
p(t)=e^{a t}\left(\cos a t-\frac{\cos a T}{\sin a T} \sin a t\right) p_{0}
$$

For $u^{*}(t)=0.1$, we obtain the general optimal evolution

$$
x(t)=e^{-a t}\left(C_{1} \cos a t+C_{2} \sin a t\right)+0.05
$$

Imposing the boundary conditions, we must have

$$
\begin{aligned}
& \left(x_{T}-0.05\right) e^{a T}=C_{1} \cos a T+C_{2} \sin a T \\
& \left(C_{2}-C_{1}\right) \cos a T-\left(C_{2}+C_{1}\right) \sin a T=0
\end{aligned}
$$

or

$$
\left(x_{T}-0.05\right) e^{a T}=C_{1} \cos a T+C_{2} \sin a T,\left(x_{T}-0.05\right) e^{a T}=C_{2} \cos a T-C_{1} \sin a T .
$$

It follows

$$
C_{1}=\left(x_{T}-0.05\right) e^{a T}(\cos a T-\sin a T), C_{2}=\left(x_{T}-0.05\right) e^{a T}(\sin a T+\cos a T)
$$

Remark: If we want to find a solution by discretization, then we must have in mind that "discretized-then-optimize and optimize-then-discretized" are two different approaches. One is not universally better than the other.

Acknowledgements

Thanks to Prof. Dr. Ionel Țevy for pertinent observations. Partially supported by University Politehnica of Bucharest and by Academy of Romanian Scientists, Bucharest, Romania.

References

Bardi, M. and Capuzzo-Dolcetta, I. (1997). Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Boston; Basel; Berlin: Birkhäuser.
Becker, R., Kapp, H., and Rannacher, R. (2000). "Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept". SIAM Journal on Control and Optimization 39(1), 113-132. DOI: 10.1137/S0363012999351097.

Hinze, M., Pinnau, R., Ulbrich, M., and Ulbrich, S. (2009). Optimization with PDE Constraints. Ed. by R. Lowen, R. Laubenbacher, and A. S. University. Vol. 23. Mathematical Modelling: Theory and Applications 4. Berlin-Heidelberg-New York: Springer Netherlands, pp. 97-156. DOI: 10.1007/978-1-4020-8839-1.

Lions, J. L. (1971). Optimal Control of Systems Governed by Partial Differential Equations. Berlin-Heidelberg-New York: Springer.
Tröltzsch, F. (2010). Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Providence: American Mathematical Society.
Udrişte, C. (2008). "Multitime Controllability, Observability and Bang-Bang Principle". Journal of Optimization Theory and Applications 139(1), 141-157. DOI: 10.1007/s10957-008-9430-2.
Udrişte, C. (2009[a]). "Nonholonomic approach of multitime maximum principle". Balkan Journal of Geometry and Its Applications 14(2), 101-116.
Udrişte, C. (2009[b]). "Simplified multitime maximum principle". Balkan Journal of Geometry and Its Applications 14(1), 102-119.
Udrişte, C. (2010). "Equivalence of multitime optimal control problems". Balkan Journal of Geometry and Its Applications 15(1), 155-162.
Udrişte, C. (2011). "Multitime maximum principle for curvilinear integral cost". Balkan Journal of Geometry and Its Applications 16(1), 128-149.
Udrişte, C. and Bejenaru, A. (2011). "Multitime optimal control with area integral costs on boundary". Balkan Journal of Geometry and Its Applications 16(2), 138-154.
Udrişte, C. and Ţevy, I. (2009). "Multitime linear-quadratic regulator problem based on curvilinear integral". Balkan Journal of Geometry and Its Applications 14(2), 117-127.
Udrişte, C. and Ţevy, I. (2010). "Multitime Dynamic Programming for Curvilinear Integral Actions". Journal of Optimization Theory and Applications 146(1), 189-207. DOI: 10.1007/s10957-010-9664-7.
Yong, J. M. (1992). "Pontryagin maximum principle for second order partial differential equations and variational inequalities". Differential and Integral Equations 5, 1307-1334.
Yong, J. M. (1993). "Necessary conditions for minimax control problems of second order elliptic partial differential equations". Kodai Mathematical Journal 16(3), 469-486. DOI: 10.2996/kmj/ 1138039853.

[^0]
[^0]: * University Politehnica of Bucharest

 Faculty of Applied Sciences, Department of Mathematics-Informatics Splaiul Independentei 313, 060042 Bucharest, Romania

 Email: udriste@mathem.pub.ro

